
A Technical Writing Resource from Expert Support

© 2020 Expert Support Inc. All rights reserved.

This article is part of a series of articles on technical writing that Expert Support hosts on its website, expertsupport.com.   
Expert Support is located in Los Altos, California and supplies contract technical writers to the computer and software industry.

Table of Contents

Why an API Requires Excellent Documentation—2

Terminology—2

Qualities of an Ideal API Reference—2

Complete Content—3

Accurate, Clear, and Unambiguous Content—6

Consistent Content—7

Well-Structured Content—9

Well-Organized and Easy-to-Navigate Content—9

Things to Remember—11

 
What’s Next—12

The Ideal API Reference

Definitions, suggestions, and 
examples to help you create an 
excellent API reference manual

Understanding technology and writing about it since 1990



A Technical Writing Resource from Expert Support

© 2020 Expert Support Inc. All rights reserved. 2

Why an API Requires Excellent 
Documentation

“An application programming interface (API) is an in-
terface or communication protocol between different 
parts of a computer program intended to simplify the 
implementation and maintenance of software. An API 
may be for a web-based system, operating system, data-
base system, computer hardware, or software library.” 
– from Wikipedia

API providers publish APIs to make life easier for other soft-
ware developers. As Wikipedia suggests, APIs—as well as 
similar elements, such as libraries, frameworks, and software 
development kits (SDKs)—are produced for interfacing with 
programming languages, databases, operating systems, and 
user applications. Web, mobile, and desktop applications 
increasingly use APIs, libraries, and frameworks to reduce 
the development effort. The goal is to significantly decrease 
the time and effort it takes to develop complicated and 
sophisticated software. But do APIs deliver on their promise? 
Sometimes.

To reap the promised benefits, API users need complete, 
clear, consistent, accurate, unambiguous, and easy-to-navi-
gate documentation. Those are the qualities of excellent API 
documentation!

When done right, API documentation has several important 
benefits for both the API user and the API provider:

•	 Improves the success rate of the API users.

•	 Speeds deployment of software based on the API, which 
helps the API user and can potentially help the API provider 
as well.

•	 Increases API user satisfaction with the API.

•	 Increases adoption of (and therefore revenue associated 
with) the API.

•	 Reduces support costs for the API provider.

The best API documentation covers a wealth of subjects from 
specifics about the structure of the API 
language, to how it should be used, to 
what kind of environment it runs in. API 
documentation suites often include the 
following docs (among others):

•	 Technical overview (an introduction 
to the API)

•	 Installation guide (often with informa-
tion about setup and configuration)

•	 Getting started guide (usually 
contains a Hello World tutorial to 
introduce and test the programming 
workflow)

•	 Additional tutorials

•	 Cookbooks and recipes

•	 Software design guide (a.k.a., 

developer guide) with complete conceptual material and 
context, guiding the API user’s thinking during application 
design and coding

•	 Build, test, integrate, and deploy guide

•	 API reference (detailed syntax and context for each element 
of the API)

For information about the ideal API documentation suite, 
check out this article.

All these documents can provide significant benefits for the API 
user, giving them a positive experience with the API, and helping 
them successfully develop usable and maintainable software. In 
this article, we’re going to focus on the API reference.

A thorough, well-written API reference is the key document for 
an API provider to offer. Without it, API users struggle to work 
with the API, because they don’t have the necessary informa-
tion to apply the API within their own software.

There are a lot of API reference manuals out there, but only a 
few are really good, in our opinion. We thought that it would 
be helpful to be clear about what qualities and characteristics 
make an ideal API reference, with a few hints about how to 
create one along the way.

Terminology

There’s no industry-standard terminology to use for the roles 
that we need to talk about in this article, so here are the terms 
we’re using:

•	 API users: Software developers who make use of an API

•	 API providers: Organizations that develop/provide an API

•	 API designers: Engineers who design and develop an API

•	 API writers: Technical writers who research and write the 
API reference

Figure 1 illustrates these roles and the relationships between 
them. In the figure, we’ve also included the parallel roles asso-
ciated with software applications to distinguish them from the 
API-related roles. 

Figure 1. Roles and products associated with application development platforms and applications

https://expertsupport.com/2020/02/the-ideal-documentation-suite-for-software-developers/


A Technical Writing Resource from Expert Support

© 2020 Expert Support Inc. All rights reserved. 3

Note that both the API and the API reference manual are part of the developer experience. In parallel, the application’s UI and 
the application user guide are the critical parts of the experience for the application’s user.

In the figure above, we intentionally made a distinction between the API writer and the tech writer who produces the application 
user guide. These two individuals have different kinds of knowledge and skills. Only a small percentage of tech writers are true 
API writers who are capable of creating an ideal API reference. Nearly all API writers have experience writing code.

Qualities of an Ideal API Reference

We think that an ideal API reference should be:

•	 Complete

•	 Accurate, clear, and unambiguous

•	 Consistent

•	 Well structured

•	 Well organized

•	 Easy to navigate

With these qualities, a reference provides complete, clear, and concise information that can be easily found by the API user. 
Although this might seem obvious, getting an API reference to have these qualities isn’t easy and is often time consuming. Also, 
not everyone agrees on the definition of these terms for an API reference, so we want to introduce our definitions.

Below we hope to provide definitions for these qualities, and give you a peek at what they might look like along with a few hints 
of how you achieve them.

Complete Content

How can you tell if an API reference is complete? Ask this question: Can this reference be used as the specifications for the API? 
Or, put another way: Can the API provider create or recreate the API from it? If the answer is no, the reference likely isn’t complete 
enough. At a minimum, the reference manual should be able to answer the questions in the table below.

For Objects and Classes

•	 What does the object/class represent?

•	 What are the attributes of the object/class? What values can those attributes have?

•	 Are there default values for the attributes?

•	 Are the attribute values inherited? If so, how?

•	 What methods/functions are associated with the object/class?

•	 How is the object/class used in relationship to others?

•	 Are there specific programming tasks associated with the object/class?

•	 Where is a real-world code example snippet that shows exactly how to use this object/class?



A Technical Writing Resource from Expert Support

© 2020 Expert Support Inc. All rights reserved. 4

For Functions, Methods, and Procedures

•	 What is the purpose of the function/method?

•	 When should the function/method be used? What is the optimal use of this function/method?

•	 Are there any related functions/methods that programmers should know about and potentially use with or instead of this 
one?

•	 How is the function/method called and what is the syntax of the call?

•	 How is the function/method used in relation to others?

•	 What needs to be set up before some code can call this function/method?

•	 What are all the parameters of this function/method? Where do all of the parameter values come from? For instance, is the 
input to one function the output from another?

•	 Does the function/method return some data, message, or status? Is it clear what the return value means?

•	 Are there side effects?

•	 What error codes can come from this function/method? What does this “xyz” message or status code mean, and what 
actions should the user code take when the code is returned?

•	 Are there rate limits? Pagination?

•	 Are there any caveats to using this function/method?

•	 Are there any real-world examples of code that shows exactly how to use this function/method?

•	 What further warnings, cautions, or notes?

•	 What user privileges, if any, are needed to use this function?

•	 Is there a commonly used procedure that needs to be explained to the users? If so, what is the step flow diagram for this 
procedure with all the items in the right order with the right parameters? Or, is there a real code example available?

•	 Is there enough information available to understand and explain what the procedure is doing and why?

For Parameters

•	 What is the purpose of this parameter?

•	 What are all valid values and their meanings? Default values?

•	 When and why would someone use these parameters and each of their various values?

•	 What happens when invalid values are specified?

•	 What are the minimums and maximums?

•	 Are there any prohibited values? What are the limitations and assumptions about the character set?

•	 On what does the value’s definition depend: user or user’s environment? If user-dependent, how and where is the definition 
made? If environment-dependent, how is the environment identified and how is the definition made differently for different 
environments?

•	 If there’s no dependency and the text is free form, what are the constraints in terms of supported and unsupported charac-
ter sets, invalid characters, and size limits? Is a value user defined, or does it depend on the user’s environment.

•	 Do certain parameter values have an effect on other parameters or commands? For example, if one parameter turns sound 
off and on, and another parameter sets the volume from 0 to 10, the documentation should show if or how the parameters 
interact.

Other Items

•	 What package or library supplies this API?

•	 Under what other conditions, if any, is use of the API allowed or denied?

•	 What data types are specific to this API? What are their possible values? Minimums/maximums? When can they be used?

•	 Are there any data structures that are used globally by the API elements?

•	 Is localization required, and, if so, how would the application need to account for it and what other impacts does it have?

•	 Is there an associated database?



A Technical Writing Resource from Expert Support

© 2020 Expert Support Inc. All rights reserved. 5

Using our definition of completeness, an ideal API reference 
describes the syntax and function of every element of the API 
in detail, even if the description of an element might seem 
obvious. The reference needs to describe every publicly 
exported object, class, function, method, property, parameter, 
data type, and so on. If it’s a web-based API, every resource, 
method, endpoint, request, response, and so on needs to be 
covered.

In addition, the reference needs to describe every aspect or 
characteristic of each element, including its intended use. This 
ensures that nothing is assumed or overlooked, and helps 

Figure 2. Example function description from the Angular API Reference

to instill the API user’s confidence in the documentation. It’s 
important for API writers to be thorough, even when they think 
the information is obvious.

Here’s an example of the animate function from the Angular 
API Reference. This entry includes the element name, what it 
is, a complete syntax with links to other elements, and detailed 
descriptions of each parameter and return values. We’ll dive 
into more details later.

https://angular.io/api/animations/animate
https://angular.io/api/animations/animate


A Technical Writing Resource from Expert Support

© 2020 Expert Support Inc. All rights reserved. 6

Completeness means two important things: describing all the 
elements of the API and describing each element exhaustively.

Can a writing team go too far with completeness? Of course. 
Remember that an API reference is a reference. This means it’s 
typically used as a random-access document, so every entry 
must stand alone. Reference entries should describe general 
usage intention—what it does, what it’s for—and should make 
the context explicit by describing how an element is expected 
to be used with related API elements and data structures.

Some discussion points belong in other documents in the API 
documentation suite. For example, long discussions about 
usage, use cases, or how the API is structured belong in a 
design or programmers guide, or in special introductory pages 
or appendices for the API reference.

Accurate, Clear, and Unambiguous Content

While complete content is essential, if the API user can’t under-
stand the content, or worse, if it’s inaccurate, the writer might 
as well have not written it. When we talk about accuracy, we’re 
referring to the correctness of the content. Too often, the 
content contained in an API reference isn’t correct or doesn’t 
work for the user. Sometimes the content is accurate, but unin-
telligible to anyone other than the person who wrote it, and in 
other situations, the content can have multiple interpretations, 
most of which are wrong.

Achieving accuracy and clarity, and avoiding ambiguity is diffi-
cult, even for good API writers. Typically, issues with accuracy, 
clarity, and ambiguity arise due to one or more of the following 
situations:

•	 Inaccurate, incomplete, or unintelligible API specification 
(spec)

•	 Not enough access to the API designers to get content

•	 Not enough access to the API designers to review 
documents

•	 Non-writers writing significant sections of content that ends 
up in the API reference

•	 Not enough reviewers outside of the API design team

The following sections provide some guidance on how API 
providers and API writers can overcome these issues.

Assign a Senior API Writer at the Beginning of the 
Design Process

An ideal API reference is typically based upon a good spec, so 
it’s important at the beginning of an API development project 
to ensure that the team develops and maintains a really good 
specification. To accomplish this, an organization can assign a 
senior API writer at the beginning of the project (even if only 
on a part-time basis) to help create/maintain the spec. When 
there’s a professional API writer involved at the beginning, that 
person can ensure clarity and unambiguity in the specification 
from the start. The technical writer can also maintain a tech-
nical glossary (which we talk about later in this article).

Other benefits to having a senior API writer on the API design 
team include:

•	 The writer of the API reference may be the first person to 
consider the entire public API (the layer exposed to the 
API user) from an API user’s perspective and can point out 
incongruities from that perspective.

•	 The members of a product team generally specialize in 
particular parts of the product or areas of functionality, and 
aren’t as familiar with areas outside of their specialty; the 
API writer has a complete view of the API.

•	 The API architects are often more concerned with 
implementation choices than with the completeness and 
consistency of the public API, and that’s exactly what the 
API writer is paid to worry about.

•	 Focusing on developing the spec or an API reference gives 
the API writer an opportunity to share their observations 
about the API user layer, representing the perspective of the 
target users. With these observations and perspectives, the 
API design team can decide how to improve the API design 
early in the process, when the cost of doing so is relatively 
low.

Generate Reference Material from Source Code

For efficiency and accuracy, many API development teams 
generate their reference documentation from comments in 
source code as a part of the development workflow. API writers 
achieve the best quality API reference if they can work directly 
on the comments in the code. When editing generated docu-
ments, an API writer does the following:

•	 Examines the comments for unclear or incomplete descrip-
tions common to initial cycles of API documentation, and 
adds complete descriptions for elements that the authors 
considered “self documenting” or obvious.

•	 Ensures completeness by checking that all input and output 
values are mentioned and described, and that defaults are 
provided for optional elements.

•	 Revises existing comments for consistent style and 
terminology.

Granting permissions and privileges to API writers for 
commenting yields high return with low risk. Writers who are 
capable of describing and explaining APIs are equally capable of 
both editing comments in code and working with version-con-
trol tools. For developers who are concerned about giving API 
writers access to their source files, some tools limit editing 
access to only comment lines.

Some API development teams don’t allow writers any degree 
of write access to source code. Instead, the API writer does the 
documentation work in a separate branch where changes are 
permitted. In this situation, the team needs to allocate extra 
resources to perform several follow-up tasks, including:

•	 Merging comment and other documentation changes into 
the main line

•	 Regenerating documents

•	 Scheduling additional rounds of reviewing

An integrated development environment (IDE) or an editor 
made code-aware with plugins can have an embedded docu-
mentation generation feature or site generator. Examples 
include Antora for AsciiDoc, JSDoc 3, and the Javadoc Gener-
ation wizard in Eclipse.



A Technical Writing Resource from Expert Support

© 2020 Expert Support Inc. All rights reserved. 7

Use Other Existing Material as a Resource for Content

When the project is underway, different groups within the API 
provider (such as the design, development, architecture, and 
marketing teams) can often provide considerable information 
about the API, even if it isn’t yet in a form that’s useful to users. 
The content tends to be focused on implementation choices 
and details, rather than the user layer and usage model. Existing 
material can include:

•	 Product requirement documents or design documents

•	 Presentations, ideally with audio and video recordings or 
detailed speaker notes to provide a full explanation of the 
slides

•	 Product/customer support documents or knowledge bases

•	 Marketing overviews or white papers

•	 Existing interactive or developer-created documentation, 
beyond what’s in the source code

•	 Content from important team email streams

From this material, experienced API writers can extract 
concepts, diagrams, terminology, and possibly even chunks of 
text and examples. With these elements, writers can fill in some 
holes in the reference or create a first pass at usage-oriented 
content. These elements can also form a basis for further ques-
tions to ask the subject-matter experts (SMEs).

Collect Content from Subject-Matter Experts

Subject-matter experts (SMEs) are typically members of the 
API development team. API architects and developers know 
the technical architecture and how the API is built, oper-
ates, and is intended to be used. SMEs can also be product 
managers, project managers, and QA and customer support 
team members who specialize in this product.

Throughout the documentation process (although primarily in 
the early stages), an API writer has to solicit information from 
SMEs. The writer’s job is to focus on the usage model and to 
work with the SMEs to provide context, identify and correct 
inconsistencies, and complete content where a deeper expla-
nation is necessary.

SMEs are often under too much pressure to have a lot of time 
to talk with writers about the product, so it’s essential for the 
writer to use every minute with an SME wisely. As such, it’s 
critical for the API writer to be prepared before approaching 
an SME.

In the best of all situations, the writer should have attempted 
to collect and understand all the available pieces of informa-
tion listed in Complete Content before interviewing the SME. 
When possible, an interview with an API SME should be more 
about getting clarification and filling in the gaps rather than 
collecting a lot of raw information that can be gleaned from 
other sources.

API writers need to prepare their questions carefully, and ask 
them cooly and neutrally. It’s also important for writers to be 
confident enough to ask clarifying questions when something 
doesn’t make sense—it really might not make sense.

Get SMEs to Review the Documentation

It’s critical for the API design team (and SMEs in general) to 
review the API documentation. It’s the only way to ensure accu-
racy and completeness. But getting access to an SME’s time is 
tough. To make it worse, if SMEs are given a lot of documen-
tation to review at one time, their eyes will likely glaze over 
and they’ll stop seeing the errors. Again, there are a number of 
techniques that help address these issues:

•	 Split the review into small chunks. Try to keep the review 
time to less than 30 minutes. This might mean that you can 
only send out one or two functions at a time for review.

•	 Make sure that the content is really ready for a review. 
Before you send out the content, clean it up a bit. Is it 
devoid of typos? Does it reflect the recent changes that 
the writer knows about? Does it use the appropriate 
terms, formatting, etc.? The cleanliness of the writing is 
incredibly important, because the writer needs to keep the 
SME focused on what they need to review—the technical 
content. They shouldn’t be distracted by extraneous errors.

•	 Send out a review to one person at a time early in the 
review process. Until the primary SME has reviewed the 
content and deemed it technically correct, don’t show it to 
others.

•	 When you get corrections from the reviewer, apply 
them globally. Nothing makes SME reviewers more upset 
than correcting the same error, term, or change multiple 
times. Note: This might take some thought on the writer’s 
part.

•	 Start the review process early! Don’t wait until the last 
minute when everyone is under the gun to get the product 
out the door.

Get Outside Reviewers to Review the Documentation

SME reviewers are necessary for getting the technical content 
accurate. However, you also need reviewers outside the team 
who aren’t familiar with the API reference, as they can point out 
where the content isn’t clear, and give you a user perspective.

These outside reviewers can be customer app developers, sys 
admins, support personnel, and field engineers. Maybe the 
writer can use customer support personnel within the orga-
nization, or a “friendly” customer (like a Beta tester) who can 
serve this purpose. In any case, the team needs to find someone 
outside the development team who doesn’t know what the 
words are supposed to mean. Writers outside the project can 
potentially be good reviewers, as long as they have the coding 
skills necessary to understand how to use the API. And also 
note that, by the end of the project, the writers working on the 
documentation are too indoctrinated in the API to be objective 
reviewers.

Consistent Content

Consistency is another important element of a good API refer-
ence. Typical API users treat an API reference like a dictionary, 
where they want to be able to look something up quickly, and 
get concise information about it. Consistency in terminology, 
order, format, color, linking, descriptions, and other aspects 
are critical to the API user’s ability to find and understand the 
information quickly.



A Technical Writing Resource from Expert Support

© 2020 Expert Support Inc. All rights reserved. 8

The technical writer needs to make the following things consis-
tent throughout the reference:

•	 Terminology

•	 Description style

•	 Formatting

•	 Navigation

•	 Ordering or structure

To achieve consistency, experienced technical writers develop 
important meta-documents that guide them while writing. We 
describe the three most important of these documents next.

Glossary

One of the first things that many experienced writers do when 
they join a project is create a (project or product or technical) 
glossary. Sound odd? It turns out that different team members, 
preliminary docs, specs and discussions, proof-of-concept 
implementations, wire frames, and so on often use different 
terms to mean the same thing, or almost the same thing. Or 
worse, they use the same term to mean two different things! 
These inconsistencies make it difficult for API developers to 
understand what the product does. It also makes it tough for 
them to ensure that all parts of the API are consistent. Even 
worse, terminology issues make it difficult for API users to 
figure out how to use the API from the reference material.

It’s critical for the writing team or the API design team to create 
and maintain an internal technical glossary. The design team 
uses this document to standardize their naming conventions, 
while the writing team needs this glossary to ensure that terms 
are used consistently throughout the API documentation suite. 
We suggest that the glossary includes these types of terms:

•	 Terms that are specific to the product

•	 Common words that have a specific meaning in the prod-
uct, such as a group, person, reader, staff, or user

•	 Terms that are overloaded with multiple meanings and uses 
within the industry

We recommend eventually publishing the basic glossary terms 
publicly so that users who are learning about the API can 
understand specific terms. For an example, visit the Angular 
Glossary.

Document Style Guide

Similarly, the writing team should create a style guide for 
writing the API reference manual content. This guide sets stan-
dards that help the API user understand what they’re looking at, 
how to find it, and how to use it.

A style guide should cover as many areas as possible related to 
creating the documentation, including:

•	 Grammatical styles and choices, such as whether to use the 
serial comma, or when to hyphenate terms

•	 Preferred tone of document, formal or friendly

•	 Word choices, such as how the writer refers to the reader, 
how things are capitalized, and standard abbreviations

•	 Product name and branding rules

•	 Formatting conventions, such as how and when to use 
headings, how to format syntax descriptions, how to format 
code examples, and what links should look like

•	 Conventions for documentation elements, such as tables, 
lists, bullets, and quotes

•	 What colors, fonts, and icons to use to highlight different 
objects under specific situations

Large companies often have an internal style guide, although 
it’s typically geared toward user or marketing documentation. If 
there’s no existing style guide for technical documents or APIs, 
the technical writing team should create one to set standards 
for the project. If the documentation is open source, this guide 
should be made available to contributors. For an example, take 
a look at the Red Hat Style Guide or the Angular Style Guide. 

Coding Style Guide

When writing API documentation, it’s important to have a 
coding style guide for both the technical writers and API users. 
This style guide is especially useful for creating code exam-
ples within the documentation. We can’t stress enough how 
important it is for the documentation to have examples that 
are considered good code. API users are notorious for copying 
code straight out of the documentation. If the examples aren’t 
clean, bad code can proliferate around the community, even-
tually causing support headaches or a bad reputation for the 
API.

Figure 3. An example glossary term from the REST API

https://angular.io/guide/glossary
https://angular.io/guide/glossary
https://stylepedia.net/style/
https://angular.io/guide/docs-style-guide
https://developer.wordpress.org/rest-api/key-concepts/%23routes-endpoints


A Technical Writing Resource from Expert Support

© 2020 Expert Support Inc. All rights reserved. 9

The coding style guide needs to cover naming conventions, 
preferred coding practices, maybe even formatting conven-
tions. If possible, this guide should cover healthy coding prac-
tices that the engineering team wants all API users to adopt.

Ideally, this meta-document should be part of the published 
documentation set. For an example, see the coding style guide 
for Angular.

Well-Structured Content

OK, let’s say that the prose of an organization’s ideal API refer-
ence is complete, accurate, clear… just perfect. But does the 
document have a clear and logical structure that enables API 
users to guess where things are located? API users make use 
of reference documents in different ways, according to their 
current task and personal preferences. As appropriate to the 
language, some are interested in finding a function, class, 
method, endpoint, or object that does what they want. Some 
want the short answer about what a class or method does, and 
how to use it. Some API users need to check a detail about 
syntax as they use a function in their code. Most just look for 
a snippet of code to copy and paste.

Each element type in the API should have a defined structure 
and that structure should be used consistently, so users can 
find what they need. For example, the entry for an API func-
tion should be able to answer the questions listed in Complete 
Content.

Some elements have more content than others, and some 
require several examples. The key thing is the structure, and 
that structure depends on what the API user needs to know. 
One of the API writer’s tasks is to create a template that suits 
the needs of the API they’re working with.

The figure below shows an example template for a function.

Well-Organized and Easy-to-Navigate Content

Document content can be accurate, consistent, and well 
written, but if the reader can’t find it, it might as well not be 
there. So, part of the job of technical writers is to make things 
easy to find. There are a number of writing techniques that 
can help the reader:

•	 Organize the content well so that element lookup is easy.

•	 Potentially provide several organizations for the different 
kinds and levels of users.

•	 Include hyperlinks to other API elements and related 
content.

•	 Use names and terminology that aid the reader when 
searching the document.

•	 Employ multiple structures or documents that organize the 
content for easy access, such as a quick reference guide.

Provide Well-Organized Content

The structure of individual elements and the overall structure 
of the API reference are both critical. The reference’s struc-
ture/table of contents (TOC), whether in a paper book, a PDF, 
or a web page, needs to be organized to help API users easily 
find what they need. Ease of use and search optimization are 
the primary goals when designing the navigation organization.

To organize the top-level topics of an API reference, the tech-
nical writer must first assess the many ways to organize the 
elements. Common strategies are:

•	 Alphabetical order

•	 Categorical groups

	ű Hierarchies, such as classes and methods in each class

	ű Concepts

	ű Actions

	ű Processes

	ű By function

•	 Order of use (task orientation)

The choice is determined by the content, the intended 
audience, the size of the API, and what kind of companion 
material is available. For example, a task-oriented approach 
to organization is appropriate for a user guide or cookbook 
document, which is read sequentially or in sections. However, 
this approach is rarely appropriate for an API reference, which 
readers typically access when searching for specific language 
elements.

The simplest organization is alphabetical, which is often used 
when the API is very small. Note that many providers of more 
complicated APIs organize first by function and then in alpha-
betical order. For example, the Okta API Reference content 
is organized at the highest level by function (mappings, policy, 
schemas). Then the next level is organized by categorical 
groups (objects, event types, operations), and the specific 
elements of each group are listed alphabetically.Figure 4. A template for a function description

https://angular.io/guide/styleguide
https://angular.io/guide/styleguide
https://developer.okta.com/docs/reference/


A Technical Writing Resource from Expert Support

© 2020 Expert Support Inc. All rights reserved. 10

There’s no one way to approach this 
high-level organization. It depends 
on the language and the use of the 
language. In fact, some API providers 
list the elements in multiple TOCs, 
because experienced and inexperienced 
API users look things up differently.

The ideal API reference provides alter-
native means for looking up informa-
tion so that readers with different levels 
of understanding, different perspec-
tives, different questions, and different 
needs can still find what they need 
quickly. Whatever primary scheme is 
used to organize the reference, an ideal 
API reference always provides at least 
one other approach and may provide 
several others.

Add Hyperlinks Everywhere

Hyperlinking is critical for an ideal API 
reference. The Angular API Reference 
for AnimationMetaData (Figure 5) 
provides links for every API element 
listed on the page. There are 16 links 
just in this section.

These links are more than just a good 
idea. If the API user sees something 
that they need to know more about, the 
writer can’t expect them to go back to 
the TOC to look for it. In the Angular 
API Reference, they just need to click 
the link. And, from our perspective, in 
the best case, the link opens in another 
window so the user can have both 
topics open at the same time.

Use Names and Terminology that 
Assist Search

When API languages are complex, there 
are often thousands of pages associated 
with the API reference, one for each 
element, plus a bunch of other related 
information. The API reference content 
itself must help readers find specific infor-
mation to answer their questions quickly.

Memorable and logical naming conventions help 
readers remember the right terms to use for searches. 
In the Angular API Reference, nearly all the functions 
associated with a different functionality start with a 
keyword for that functionality. For example, nearly all 
the functions associated with animations, start with 
Animate. This convention gives the API user a place to 
start when looking for a function.

Figure 5.  Hyperlinks in an online API reference

Employ other Useful Structures/Documents for 
Organizing Content

Beyond basic search functionality and the overall API refer-
ence TOC structure, there are other meta-documents or 
meta-pages that can really help the API user.

API quick reference—It’s surprising how often API users just 
need to look up the name of an element and its syntax. An 
API quick reference that lists the element name, a single line 
of syntax, and a very short description in a table can be very 
supportive to API users. Many API users keep this page open 
on their desktops. Several API providers have even created 
API quick reference wall charts, which are popular among API 
users.

https://angular.io/api/animations/AnimationMetadata
https://angular.io/api
https://angular.io/api/animations/AnimationMetadata


A Technical Writing Resource from Expert Support

© 2020 Expert Support Inc. All rights reserved. 11

Glossary—Beyond establishing terms, a glossary should 
provide links to related API elements that help the less expe-
rienced API user.

Index (for print or PDF delivery)—Sometimes indexes are 
really helpful. With the use of search on web pages, indexes 
are rarely needed; however, if an organization still provides 
paper versions, an index is critical, and if an organization 
provides PDFs, it’s still often worth the effort.

The differing styles of organization inherent in each type of 
reference provide a variety of ways for readers to find infor-
mation: alphabetic in the TOC and glossary, by category in the 
lists, and by actions or operations in the index.

When deciding what to include in a TOC, glossary, quick 
reference, or index, it’s important to come from the API user’s 
perspective. What tasks can a programmer perform with this 
API? What information do they need to accomplish a particular 
task? How are they going to look for it?

Things to Remember

The cornerstone of an effective API documentation suite is the 
API reference. An organization with a small, simple API might 
not need an ideal API reference, because something basic is 
sufficient. However, if an organization has a large, complex API 
and the reference doesn’t meet the qualities of the ideal API 
reference, their API users will likely suffer and might be unsuc-
cessful using the API. The final result is that no matter how 
great it is, the API won’t get adopted the way the organization 
had hoped.

Figure 6.  A small part of the Angular Quick Reference

There’s a strong relationship between good API design and 
good API documentation. For best results, create the docu-
mentation plan and involve an information architect (or senior 
technical writer) early in the API development cycle. This 
strategy helps the API design team create a better API that‘s 
not only easier to document, but also easier to understand, 
use, and maintain.

Many of the techniques that make an API reference clear, 
complete, and easy to use should be considered in the design 
of the API itself. As API architects and designers work with 
information architects and experienced writers to create excel-
lent documentation, they typically uncover inconsistencies 
of naming or usage that can cause significant confusion and 
make learning difficult. Things that are hard to describe are also 
hard to use, and identifying those pain points early benefits 
everyone.

Good API documentation doesn’t write itself. It takes team-
work consisting of the API design team and trained technical 
writers that know how to give it the qualities of the ideal 
API documentation suite. In addition, an ideal API reference 
isn’t easy to write. Those writers who can master the ideas 
presented here, also need to master the tools and techniques 
that make these projects successful. 

https://angular.io/guide/cheatsheet


A Technical Writing Resource from Expert Support

© 2020 Expert Support Inc. All rights reserved. 12

 
What’s Next

We hope this paper helps you understand more about the 
elements needed to create a high-quality API reference for your 
API. Let us know if you found this article useful, and what you 
particularly liked about it as well as where you’d like to see 
more explanation or assistance. We expect to update this docu-
ment with additional information, and we’d love to hear from 
you so we can focus our efforts where they might matter most.

This paper is the first in a series that will cover, in time, how 
to evaluate and effectively produce technical communications 
for software developers, systems administrators, end users, 
and others. If you have specific challenges or ideas for how we 
should prioritize these projects, we’d love to hear from you.

And of course, if you need help with specific technical commu-
nications projects or staffing, please do let us know. We’d love 
to explore how we might support your efforts directly.

This article is the result of a collaborative effort among Expert Support Staff, with significant contributions from 
these Senior Technical Writers: Judy Bogart, Denny Brown, Jan Clayton, Ellen Levy Finch, Carli Scott, and Eric 
Wenburg. As such, this work represents the collective expertise of many of the world’s best technical writers 
assembled at Expert Support, and working for demanding clients in Silicon Valley over the last several decades.


	Why an API requires excellent documentation
	Terminology
	Qualities of an ideal API reference
	Complete content
	Accurate, clear, and unambiguous content
	Consistent content
	Well-structured content
	Well-organized and easy to navigate content

	Things to remember
	
What’s next




