
A Technical Writing Resource from Expert Support

© 2020 Expert Support Inc. All rights reserved.

This article is part of a series of articles on technical writing that Expert Support hosts on its website, expertsupport.com.
Expert Support is located in Los Altos, California and supplies contract technical writers to the computer and software industry.

The Ideal Documentation Suite for Software Developers

“What does Expert Support recommend for the
contents of an ideal documentation suite for soft-
ware targeted at software developers?”

Of course, the answer is complicated. Specific situations
vary from company to company and for various software
technologies.

This question led to several conversations
with many of our senior writers. As you
might expect, patterns and conventions
began to emerge. The rest of this article
summarizes the high-level consensus, and
can serve as a checklist for any documenta-
tion suite aimed at a community of software
developers.

As you’ll see, this checklist boils down to
a list of deliverable documents. Each one
addresses a different set of assumptions
about the reader, what they’re trying to
accomplish, and how they’ll use each of
these documents. The “reader experience”
varies widely across these deliverables, but
each one addresses a specific part of the developer experience.

This list of potential deliverables applies to any developer-to-de-
veloper documentation suite. This includes APIs, SDKs, plat-
forms, frameworks, and other types of software development
platforms. For simplicity, we’ll refer to this collection of tech-
nologies as APIs, because they all have similar documentation
needs.

Also, note that not every API will require everything on the list
below. But every API team should consider everything on this
list when determining their documentation priorities. Each
deliverable addresses a different facet of the developer experi-
ence, and each one might be crucial to your API users’ success.

The Ideal Documentation Suite for Software
Developers

Technical Overview

Start with the technical overview. Explain what the technology
is, what it does, who should use it, and most importantly, the

unique benefits it can deliver. The benefits should be differen-
tiating and compelling, as they’re the only reasons why anyone
should pay attention to the technology.

A good technical overview can provide a high-level descrip-
tion of how the underlying system works, how the software

compares to alternatives, and why the unique
benefits of this technology make it superior.

The technical overview should appeal to
the developers you want to use your API
(we’ll call them the API users), and can even
discourage those who shouldn’t be using it.
No API can do everything, and being frank
about the limitations of your technology is
refreshing to API users, and sets expecta-
tions about what they can and cannot expect
from your technology. Also, identifying the
limits of your API will reduce the amount of
time you’ll waste supporting API users with
unrealistic expectations.

Further, writing the technical overview
improves your understanding of the big

picture, creates context, and sets the stage for all that follows.

Reference

The reference is the key deliverable in the set. This document
serves as the foundation for the rest of the suite, and may
be the only material that more experienced API users ever
consult.

Think of the reference as the online dictionary for the tech-
nology. Imagine that an API user is programming away, and
can’t quite remember how a particular function, class, method,
or other element works. They’ll want to look it up quickly,
easily find the specifics they need, and get right back to work.

If you have an API, you need a reference. The effort you put
into creating a reference that’s complete, accurate, consistent,
concise, and easy to use will pay dividends for as long as API
users use your technology.

Because the reference is crucial to the success of the software,
we’re working on a white paper about how to create a good
one. Stay tuned, as we’ll have a lot more to share shortly.

Potential deliverables for any developer-to-developer documentation suite

–Expert Support Staff

Understanding technology and writing about it since 1990

https://expertsupport.com/
https://expertsupport.com

A Technical Writing Resource from Expert Support

© 2020 Expert Support Inc. All rights reserved. 2

Installation/Setup/Configuration Guide

While most API provider teams know that they need a refer-
ence, this next deliverable is often overlooked. The installation
guide tells a new API user how to set up their development
workstation with the necessary software environment. Setup
details can include how and where to get credentials for the
VPN, access to wiki pages and bug tracking systems, GitHub
repos, Slack channels, and information about other key devel-
oper tools.

This guide should include everything needed for setup and
configuration, things that you think are obvious, but often are a
complete mystery to newcomers. You may even have different
versions of this, one for internal developers, one for external
developers, one for partners, and so on.

We’re consistently surprised at how often API providers don’t
have basic installation and setup documentation, even for their
new employees. Instead, they rely on expensive hand holding
by team members, or trial-and-error efforts by the new API
user. Creating instructions is more efficient for everyone,
and makes for a much better ramp-up experience for a new
programmer joining the team.

Getting Started/Hello World

This next deliverable can jumpstart the real work. The getting
started guide provides an introduction to using the API with
some simple practical examples. The getting started section is
often overlooked in an API documentation suite.

A getting started guide usually includes a Hello World recipe
(more on recipes below). If you aren’t familiar with Hello World,
it’s the shortest functional program that you can write using
an API. The program is a complete coding example that a
developer can compile, execute, run, and see simple results.
Originally, these programs ran just enough code to produce
the message “Hello World” on a screen or printer.

Completing this how-to recipe delivers a quick emotional win
to the new API user, and serves as a simple test to validate
that the environment is set up properly. If constructed using
good coding style, the Hello World recipe can be used by API
users as a foundation for their first programs. Often, these first
programs are written while completing tutorials, which is the
next deliverable on our list.

Tutorial (Training Materials)

After the API user has set up their work environment, a tuto-
rial can help them understand the basics. Tutorials are particu-
larly helpful if your technology is complex.

Tutorials typically define key terms, describe how to use
the technology, explain how to organize the code, present
programming conventions, and so on. Effective tutorials can
efficiently give new API users a solid, basic understanding of
your entire system. Lessons in a self-paced tutorial should be
clearly labeled with the skills they impart, provide sign posts
for how long each lesson takes, and explain how each lesson
fits into the overall instruction set.

Depending on the breadth and depth of the technology, tuto-
rials serve as the starting point for training materials. As adop-
tion grows and the technology matures, market demand for
quicker and easier onramps can lead to a variety of training
tools, classes, and programs. Tutorials help jumpstart that
process.

Recipes and Cookbooks

If your API is straightforward, you might be able to skip
the tutorial and dive right into recipes. Recipes are simple,
ordered, step-by-step instructions for specific tasks with the
software technology.

Ask yourself the following question: What are the top five
tasks every API user should do to quickly get the highest value
impact from our technology? Write those down. Now, explain
how to accomplish those tasks with a recipe for each.

Quick wins that deliver real value early in the game are hugely
important. They provide proof that deciding to use your tech-
nology was a good decision. Next, they give the new API user
confidence. By realizing a quick win, and being able to be
recognized for producing that quick win, API users begin to
establish positive momentum, and look forward to using more
of your system.

A collection of such recipes forms a cookbook. The more
recipes you have, the better; however, the most valuable or
popular ones should always be listed first.

With food, recipes give cooks the measurements and tech-
niques to prepare meals like chefs. The same is true for APIs
and related software development platforms. Simple, step-
by-step instructions are powerful in that they provide the
information needed for API users to become adept with your
technology. This can accelerate customer success, deliver real
value sooner, and build momentum for your technology within
the organization adopting it.

Software Design Guide

Of course, a couple of cookbooks full of great recipes won’t
transform a cook into a great chef. Similarly with software,
some developers stick to the basics (cooks), while others
aspire to master the platform and even invent new ways to
realize the value it provides (chefs).

Back in the 80’s, we worked with Alan Fisher at
Teknowledge, a high-flying AI start up of that era. Alan
coined what I call “Fisher’s Law of Software.” Similar
to Moore’s Law, which suggests that the number of
transistors in a dense integrated circuit doubles about
every two years, Fisher’s Law of Software says, “Every
five years, there’s a new name for the subroutine.”

Quick aside

https://en.wikipedia.org/wiki/Moore's_law
https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Integrated_circuit

A Technical Writing Resource from Expert Support

© 2020 Expert Support Inc. All rights reserved. 3

While a design guide isn’t needed in every instance, if your
software technology is complex and has a broad set of poten-
tial applications, it’s a must. Enabling developers to achieve
true mastery of the API requires another level of information.
In the design guide, the system architects can teach API users
about the elegant features of their design, and how to apply
that elegance in the context of software development. This
document identifies, explains, and justifies recommendations
for best practices.

Instead of step-by-step instructions for accomplishing specific
tasks (recipes), a design guide explains the big conceptual ideas
and how they relate to one another. It also explains the design
tradeoffs that were made when constructing the system archi-
tecture, the reasoning behind those design choices, and why
the technology was created, organized, and constructed the
way it was.

These higher-level explanations help API users get inside the
heads of the platform architects and think about solving prob-
lems in the same way as those architects. This helps API users
master the design paradigm that the architects envisioned, and
use that understanding to realize even more value from that
paradigm, becoming chefs of your API.

Think of it this way:

Mastering a design paradigm is to cut-and-paste coding

as

Being a master chef is to cooking with recipes

While you can appreciate and value the work of both cooks
and chefs, the designers of a great API hope to inspire users
to make the most of their work and use their technology for
innovation. Cultivating such an ecosystem expands the value
that a platform creates, and can help API providers realize the
full potential of their technology.

Build, Test, Integration, and Deployment Guide

Some API technologies require additional documentation that
explains the build and test cycle, as well as particulars about
integrating the software and deploying it on specific platforms.

A software development kit (SDK) often works on multiple plat-
forms and integrates with other systems, including embedded
systems. The tools in an SDK assist the programmer with tasks
that programmers have to do that don’t include coding. These
tools can include compilers, debuggers, libraries, and test
harnesses, all specific to a hardware platform and operating
system combination.

The build, test, integration, and deployment guide explains
how to use these tools for the platforms that the SDK was
designed to support. It might have a section on trouble-
shooting the build process. It also might discuss specifics on
how to package, distribute, and install the resulting software.
Sometimes this document is split up into separate documents,
one for each platform.

Release Notes

After the first release of any API, every additional update
should include comprehensive release notes. When done well,
release notes accelerate the adoption of the latest technology
by the user community, reduce the time and effort required to
adopt the upgrade, and eliminate confusion about changes in
the latest version.

While good release notes are concise, they usually include a
brief description of the goals of the release (adding features,
fixing bugs, improving performance, whatever), what was
changed in the API, step-by-step instructions for adopting the
new version, and advice for avoiding known incompatibilities
or other problems.

It’s a good idea to circulate a draft of the upcoming release
notes at the beginning of the development process instead of
waiting until the end to prepare them. Sharing what you hope
to say to users about your API update at the onset of the sprint
helps align the efforts of the team, and often surfaces issues
or misunderstandings early in the process when they’re still
manageable.

FAQs and Knowledge Bases

When an API is deployed and adopted, the user community
will inevitably have questions about its use. When those ques-
tions are asked and answered, the API provider will want some
way to capture and share that dialog with other users who
might have the same questions.

The most popular questions and answers can be compiled
into a frequently asked questions (FAQ) document. The
FAQ might be a static document with your selection of the
questions that your users might ask. Better yet, you might use
a knowledge base app, similar to StackOverflow, to capture,
curate, and sort the most common questions. These systems
automatically move popular questions and answers to promi-
nent positions so visitors can easily discover them.

Regardless of the tools used to construct it, an effective knowl-
edge base for your API should cater to the informational needs
of your audience. For example, the knowledge base should
adopt the same organizational model as your documentation
(again, to reduce cognitive load), link to the documentation as
appropriate, and use the same terminology in the same way.

A Technical Writing Resource from Expert Support

© 2020 Expert Support Inc. All rights reserved. 4

This article is the result of a collaborative effort among Expert
Support Staff, with significant contributions from these Senior
Technical Writers: Judy Bogart, Denny Brown, Jan E. Clayton, Ellen
Levy Finch, Paul Gustafson, and David Welsch.

The Ideal Documentation Suite for Software
Targeted at Software Developers

In closing, let’s review the checklist:

űű Technical Overview

űű Reference

űű Installation/Setup/Configuration Guide

űű Getting Started/Hello World

űű Tutorial (Training Materials)

űű Recipes and Cookbooks

űű Software Design Guide

űű Build, Test, Integration, and Deployment Guide

űű Release notes

űű FAQs and knowledge bases

This list of deliverables covers all the bases, and pushes the
API user along a learning path that leads to deeper under-
standing over time. We first wrote about our experience with
this approach here. One of our writers pointed out this prag-
matic checklist echoes ideas found in the DITA Concept, Task,
Reference model, as well as Bloom’s taxonomy of learning, and
while our approach is drawn from experience writing about
software, it’s not surprising our techniques follow similar
patterns found in other sources.

When produced well, experience suggests this documentation
suite helps flatten the learning curve and helps developers
achieve value faster. Of course, all of this information has to
be produced and deployed via documentation technology in
a way that makes it easy to produce and maintain, as well as
easy for API users to find and use. You need to make dozens of
tools choices to pull this off, but that’s another article.

We’re very interested to know what you think. Is anything
missing from this list? Is something on this list that shouldn’t
be?

And of course, if you need help with this work, contact us here.
If you are a person who loves this kind of work and can help us
with these sorts of projects, please do let us know here.

As always, we look forward to hearing from you.

(WriteTheDocs Lightning Talk Slides here.)

More information can be found on our website:

https://expertsupport.com

https://expertsupport.com/2018/09/lessons-from-a-cephalopod/
https://en.wikipedia.org/wiki/Darwin_Information_Typing_Architecture
https://en.wikipedia.org/wiki/Darwin_Information_Typing_Architecture
https://en.wikipedia.org/wiki/Bloom%27s_taxonomy
https://expertsupport.com/technical-writing-company/how-can-we-help/
https://expertsupport.com/technical-writing-company/how-can-we-help/
https://expertsupport.com/careers/
https://expertsupport.com/careers/
https://expertsupport.com/wp-content/uploads/2020/02/Ideal-Doc-Suite-in-5-minutes.pdf
https://expertsupport.com/

